2.3W DUAL AUDIO POWER AMPLIFIER

The KA2206 is a monolithic integrated circuit consisting of a 2 channel power amplifier.It is suitable for sterco and bridge amplifier application of radio cassette tape recorders.

FEATURES

- High output power

Stereo : $\mathrm{P}_{0}=2.3 \mathrm{~W}$ (Typ) at $\mathrm{Vcc}=9 \mathrm{~V}, \mathrm{R}_{2}=4 \Omega$.
Bridge : $\mathrm{Po}=4.7 \mathrm{~W}$ (Typ) at $\mathrm{Vcc}=9 \mathrm{~V}, \mathrm{R}_{2}=8 \Omega$.

- Low switching distortion at high frequency.
- Small shock noise at the time of power on/off due to a built-in muting circuit.
- Good ripple rejection due to built-in ripple filter.
- Good channel separation.
- Soft tone at the time of output saturation.
- Closed loop voltage gain fixed 45 dB (Bridge : 51 dB) but availability with external resistor added.
- Minimum number of external parts required.
- Easy to design radiator fin.

ORDERING IMFORMATION

Device	Package	Operating Temperature
KA2206	16 DIP	$-20 \sim+70 \mathrm{C}$

16 DIP

BLOCK DLAGRAM

KA2206 2.3W Dual Audio Power Amplifier

ABSOLUTE MAXIMUM RATIFGS(T $=25 \mathrm{C}$)

Characteristics	Symbol	Value	Unit
Supply Volage	Vcc	15	V
Power Dissipation	Pd	4^{*}	W
Operating Temperature	Topr	$-20 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-40 \sim+150$	C

*Fin is soldering on the PCB
ELECTRICAL CHARACTERISTICS ($\mathrm{Ta}=25^{\circ}{ }^{\circ}$, $\mathrm{VCc}=9 \mathrm{~V}, \mathrm{f}=1 \mathrm{KHz} \mathrm{Rg}=600 \Omega$, unless otherwise specified)

TYPICAL APPLICATION CIRCUIT:Stereo Amplifier

Fig. 2

TYPICAL APPLICATION CIRCUIT:Bridge Amplifier

Fig. 3

VOLTAGE GAIN ADJUSTMENT

1.Stereo application

I) Fixed voltage gain (Pin 9 connected to GND directly)

$$
\begin{equation*}
A v=20 \log \frac{}{R 2} \tag{dB}
\end{equation*}
$$

11) Variable voltage gain (Rf and Cl connected with pin 9) R1 $A v=20 \log \frac{R 1}{R 2+R f}$

2.Bridge application

I) Fixed voltage gain (Pin 9 connected to GND directly)

$$
A v=20 \log \frac{\mathrm{R} 1}{\mathrm{R} 2}+6(\mathrm{~dB})
$$

II) Variable voltage gain (Rf and Cl connected with pin 9)

$$
A v=20 \log \frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{Rf}}+6(\mathrm{~dB})
$$

OUTPUT POWER-INPUT VOLTAGE

VOLTAGE GAIN-FREQUENCY

TOTAL HARMONIC DISTORTION-OUTPUT POWER

FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-FREQUENCY

TOTAL HARMONIC DISTORTION-FREQUENCY

OUTPUT RIPPLE VOLTAGE OUTPUT NOISE VOLTAGE GENERATOR RESISTANCE

POWER DISSIPATION-OUTPUT POWER

CHANNEL SEPARATION-FREQUENCY

POWER DISSIPATION-OUTPUT POWER

OUTPUT POWER-SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT SUPPLY vOLTAGE

OUTPUT POWER-INPUT VOLTAGE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

QUIESCENT CIRCUIT CURRENT-AMBIENT TEMPERATURE

FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-FREQUENCY

OUTPUT POWER-SUPPLY VOLTAGE

POWER DISSIPATION-OUTPUT POWER

