

2.3W DUAL AUDIO POWER AMPLIFIER

The KA2206 is a monolithic integrated circuit consisting of a 2-channel power amplifier. It is suitable for stereo and bridge amplifier application of radio cassette tape recorders.

FEATURES

High output power

Stereo : Po=2.3W (Typ) at Vcc=9V, $R_L\!=\!\!4\Omega$.

Bridge: Po=4.7W (Typ) at Vcc=9V, R_L=8Ω.

- · Low switching distortion at high frequency.
- Small shock noise at the time of power on/off due to a built-in muting circuit.
- · Good ripple rejection due to built-in ripple filter.
- · Good channel separation.
- Soft tone at the time of output saturation.
- Closed loop voltage gain fixed 45dB(Bridge: 51dB) but availability with external resistor added.
- Minimum number of external parts required.
- · Easy to design radiator fin.

ORDERING INFORMATION

Device	Package	Operating Temperature			
KA2206	16DIP	-20 ~ +70 ℃			

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

Characteristics	Symbol	Value	Unit V	
Supply Voltage	Vcc	15		
Power Dissipation	Pd	4*	w	
Operating Temperature	Topr	-20 ~ +70	℃	
Storage Temperature	Tstg	-40~+150	℃	

^{*}Fin is soldering on the PCB

ELECTRICAL CHARACTERISTICS (Ta=25 °C, Vcc=9V, f=1KHz Rg=600 Ω, unless otherwise specified)

Characteristic	Symbol	Test Conditions		Min	Тур	Маж	Unit
Operating Supply Voltage	Vœ				9	11	V
Quiescent Circuit Current	Icc	Vi=0,Stereo			40	55	mA
Closed Loop Voltage Gain	Av	Stereo	Vi=45dBm	43	.45	47	₫B
• •		Bridge	-	49	51	53	₫B
Channel Balance	СВ	Stereo		-1	0	+1	₫B
	†	Stereo	R _L =4Ω,THD=10%	1.7	2.3		W
Output Power	Po		R _L =8Ω,THD=10%		1.3		W
		Bridge	R _L =8Ω,THD=10%		4.7		W
Total Harmonic Distortion	THD	Stereo	Po=250mW,R _L =4Ω		0.3	1.5	%
		Bridge			0.5	 	%
Input Resistance	Ri			21	30		KΩ
Ripple Rejection	RR	Stereo,Rg=0Ω, Vr=150mV f=100Hz		40	46		ď₿
Output Noise Voltage	V _{NO}	Stereo,Rg-	0Ω		0.3	1.0	mV
		Stereo,Rg=10KΩ			0.5	2.0	mV
Cross Talk	СТ	Stereo,Rg=10Kn,Vo=0dBm		40	55		dΒ

TYPICAL APPLICATION CIRCUIT: Stereo Amplifier

Fig.2

TYPICAL APPLICATION CIRCUIT: Bridge Amplifier

Fig.3

VOLTAGE GAIN ADJUSTMENT

1.Stereo application

I)Fixed voltage gain
(Pin 9 connected to GND directly)

R1

Av= 20log _____ (dB)

II)Variable voltage gain
(Rf and C1 connected with pin 9)
R1
Av= 20log------ (dB)

R2+Rf

2.Bridge application

I)Fixed voltage gain (Pin 9 connected to GND directly)

$$Av = 20\log \frac{R1}{P2} + 6 \text{ (dB)}$$

11)Variable voltage gain (Rf and C1 connected with pin 9)

$$Av=20\log\frac{R2}{R2+Rf}+6(dB)$$

OUTPUT POWER-INPUT VOLTAGE

VOLTAGE GAIN-FREQUENCY

TOTAL HARMONIC DISTORTION-OUTPUT POWER

FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-FREQUENCY

TOTAL HARMONIC DISTORTION-FREQUENCY

OUTPUT RIPPLE VOLTAGE OUTPUT NOISE VOLTAGE GENERATOR RESISTANCE

POWER DISSIPATION-OUTPUT POWER

CHANNEL SEPARATION-FREQUENCY

POWER DISSIPATION-OUTPUT POWER

OUTPUT POWER-SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT SUPPLY VOLTAGE

OUTPUT POWER-INPUT VOLTAGE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

QUIESCENT CIRCUIT CURRENT-AMBIENT TEMPERATURE

FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-FREQUENCY

OUTPUT POWER-SUPPLY VOLTAGE

POWER DISSIPATION-OUTPUT POWER

